

Geochemistry of Aluto-Langano and Corbetti Geothermal Systems

Berhanu Gizaw

Geological Survey of Ethiopia

Email: berhanugizaw@yahoo.com

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems Be

General Geology and Geochemistry the Rift

Afar
Basaltic volcanism
Sodium chloride

MER - Acid volcanics - Sodium bicarbonate waters

Adopted from Mackenzie et al, 2005

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems Berhanu Gizaw

Scope of the presentation

 Fluid chemistry - (surface manifestations and deep exploratory wells)
 Water-rock interaction processes
 Physical conditions / processes

Outstanding Phenomenon in the MER Waters

Very low Ca and Mg: < 2 mg/L Boiling removes Ca and Mg from the fluids - fixed with calcite, epidote, etc

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems Berhanu Gizaw

Water Chemistry

High fluoride (about 30 mg/L) Groundwaters
Acidic rocks: Chem weath/dissolution
High T underground: over 340°C at 2500m at Aluto-Lanagno
High HCO₃
Low Ca
Lakes
Subsequent evaporation in the Lakes
It seems that fluoride is a mobile in the MER waters!

TDS: ~ 3.2 g/L

Ionic strength: < 0.06</pre>

Fluids < 0.2% by wt of either NaCl or HCO3

Gas Chemistry – Total Discharge

Well	H ₂	02	N ₂	CO ₂	H ₂ S	NH ₃	CH ₄
LA-6	0.04	1x10 ⁻²⁹	0.25	32	0.2	3.6x10 ⁻³	0.13
LA-8	0.02	1.6x10 ⁻³⁴	0.47	40	0.03	1.5x10 ⁻³	0.45

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems Berhanu Gizaw

PCO2 Vs Temperature

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems Berha

Upflow Zone of the Field

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Physical processes

Mixing processes

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems Berha

Physical processes

Boiling Processes

T. decreases by > 100°C within 200m in LA-6

2.6°C Temp. drop
for each % of water
vaporized in LA-6

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems Berhanu Gizaw

Geothermometry

Na Vs K - Aluto-Langano Area, etc - Calibrated

-	Geothermometer	Temperature functions, (*C). Range 200-360*C	Units	R ²
	FeH	$\log \sqrt{Fe^{+2}} / H^+ = 9.0514 - 2.5646 \times 10^{-2} r^2 - 2.0079 \times 10^{-5} r^2$	a	0.986
	CaK	$\log \sqrt{Ca^{+2} / H^{+}} = 2.3182 - 1.7627 \times 10^{-2} t + 4.1260 \times 10^{-5} t^{2} - 4.4095 \times 10^{-8} t^{3}$	a	0.930
	HF	$\log\mathrm{HF}^{0} = -8.3977 - 1.8387 \ge 10^{-2} \ \mathrm{t} + 2.7340 \ge 10^{-4} \ \mathrm{t}^{2} - 5.1643 \ge 10^{-7} \ \mathrm{t}^{3}$	m	0.945
	AIOH	$\log Al(OH)4^{-}/OH^{-} = -4.6604 + 3.3892 \text{ x } 10^{-2} \text{ t } -1.0430 \text{ x } 10^{-4} \text{ t}^{2}$	a	0.986
	КН	$\log K^+/H^+ = 11.205 - 5.9411 \times 10^{-2} t + 1.4268 \times 10^{-4} t^2 - 7.8559 \times 10^{-8} t^3$	a	0.715
	NaH	$\log Na^+ / H^+ = 15.628 - 8.9698 \times 10^{-2} t - 2.3539 \times 104 t^2 - 1.7908 \times 10-7 t^3$	a	0.840
	NaK	$Na^+ / K^+ = 25.309 - 0.10113 t + 1.1370 x 10-4 t^2$	ppm	0.981
10	Na	Na ⁺ = 1904.9 - 1.9081 t - 4.3453 x 10-3 t ²	ppm	0.994
	к	$\mathrm{K^{+}=-639.27+7.6580\:t\:-2.5245\:x\:10^{-2}\:t^{2}+2.8869\:x\:10^{-5}\:t^{3}}$	ppm	0.995
	Na/Li	Na ⁺ / Li ⁺ = 1.7814 x 10 ⁴ - 124.13 t + 0.18868 t ² + 1.2840 x 10 ⁻⁴ t ³	ppm	0.923
1	SO4/H2S	$SO4 - 2/H2S^0 = 658.54 - 5.9038 t + 1.7664 x 10^{-2} t^2 - 1.7623 x 10^{-5} t^3$	ppm	1.000
2 1	CO2/H2S	$CO2^0 / H2S^0 = 7043.6 - 37.98 t + 5.1664 x 10^{-2} t^2$	mM/100M	1.000
3 .	TDS	TDS = 7712.5 - 12.676 t	ppm	0.992
4 1	I	$I = 0.11950 - 2.6956 \ge 10^{-4} t$	m	0.980
5 1	Eh	Eh = 0.77083 - 6.8811 x 10 ⁻³ + 7.0364 x 10 ⁻⁶ t ²	volt	0.999

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Na Vs K - Aluto-Langano Area

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems Berhanu Gizaw

The State of Fluorite Saturation

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Berhanu Gizaw

400

300

Mineral distribution in deep Aluto-Langano wells

	150	250	350 ⁰ C
<u>4.4. Mi</u>			
Heulandite			
ontmorillonite	un lytical Methods		
Siderite	petral) probe is wied to det	entaine major and mmorielem	ent anna sanasa
Calc	ite	iestructive, the only might pro	quifilles to help
Quartz	of DicA: Here income		
Fe-oxides	neparat de 104 <u>, de seco</u> n	week-forest extension little thread	and the second second
Pyrit	e ^{ad axcept the barby}	nyres was 1015 septemés	
Illite	east so thenoist budgess	data of colory 30 claims i a	
Alk. feldspars	e atea ourced reaction real		
Albite	En Appendix 3		
K- feldspar	leasts and Diversion		
Plagioclase			
Sphene		gito gan indicas realigene, te	COLORIS MULTINES
Chlorite	eca, astrolider, control, ga	national fear and maintenance	and the line of the
Biotite			
Epidote		ig al ind reases surgers and	in the second second
in section	a(4.1-02); Therefore, 486	mein machesis. In this sectle	en an test ser es

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Photomicrographs showing primary and secondary minerals

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Aluto-Langano and Corbetti Geothermal Systems

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Isotope Indications

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Isotope Indications

Recharge: Escarpment

- Relief difference
- 🖙 Rainfall
- Tsotopic evidence

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Environmental aspect

Rinjection the fluid back into the system is to be encouraged.

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Conclusions

The Aluto-Langano geothermal system is matured one

[®]Neither potential scaling nor corrosion is anticipated

The fluid is suitable for commercial utilization

The anticipated recharge mechanism is assumed to be sufficient to support sustainable development of the field

Recommendations

Full scale exploration and development

GSE and EEPCo need to work closely in a sustainable manner

Corbetti Geothermal Prospect

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Geology

Silicic volcanic system

 A classic resurgent cauldron with post-caldera volcanism during the Pleistocene having produced four major volcanic edifices: Urji, Chebi, and volcanoes

Surface hydrothermal alteration mixed layered clays (montmorillonite), kaolin, and amorphous silica (sinters), while the study of

The cuttings recovered from TG - high temperature mineral assemblages such as chlorite, kaolin, calcite and quartz.

Figure 11, Geological map of Corbetti geothermal prospect (GSE, 1987)

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Geochemistry

Thermal manifestations – restricted to steaming grounds and fumaroles
 Three out of the six drilled TG wells (93-178m) reached the shallow groundwater level

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Geochemistry

Water type The chemistry of shallow gradient wells sodium bicarbonate type.

The waters encountered in these wells – affected by evaporation (TG-3) and steam heating (TG-2)

Relatively high H2S (Koka fumaroles)

Geochemistry

Subsurface temperatures predicted - in excess of 300°C

- Gas equilibrium temperatures,
- Helium and neon measurements from two steam vents,
- Isotope geothermometers

Isotopic investigations

- The 18O enrichment of some temperature gradient wells is probably due to evaporation.
- The isotopic composition of the steam from fumaroles lies on the meteoric line.
- Isotopic and chemical data suggest that the system is recharged from the eastern escarpment.

Hydrogeology

Shallow groundwater flow direction:

Dominantly from south to north

Zeal Bessemer, 2003

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems

Conclusion

✓ Corbetti is one of the most promising geothermal field in the Lakes District

Recommendations

- Detailed structural and hydrothermal alteration studies to help in locating the more permeable zones of the deep reservoir area.
- Detailed geochemical work especially soil geochemical investigation (CO2, Rn, Hg) - to aid in identifying zones of leakage and map the upflow zone
- Shallow (slim?) well drilling to understand the top-most part of the geothermal system and to contribute to the better planning of the deep investigation-drilling program should be drilled to reach at least the hot water surface that should be expected to be at about the 1600-1620m asl.

Geochemistry of the Aluto-Langano and Corbetti Geothermal Systems